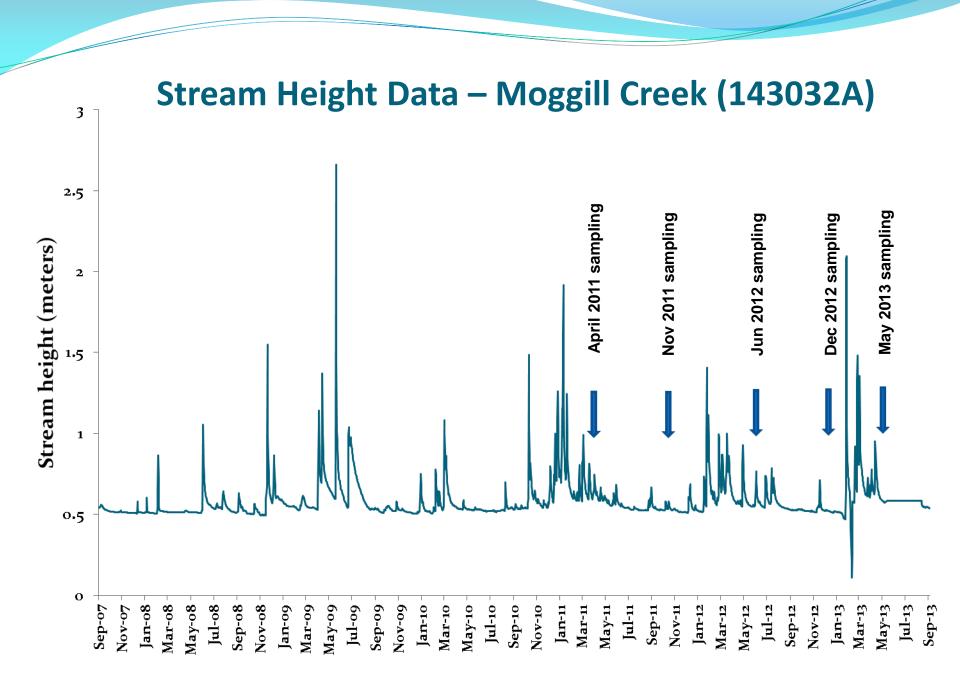
Moggill Catchment Creek Health Monitoring Program May 2013 – Sampling Overview

Prepared by Dr Tim Howell and Camille Percival

Thank you!

Without you we wouldn't have such a successful monitoring program!

We really appreciate you giving up your precious time to participate and we hope that you will continue to be involved with the program!



Monitoring Program Objectives

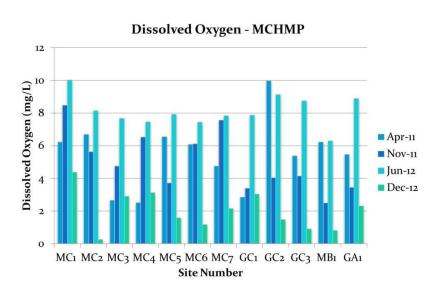
- To assess current conditions throughout the catchment (fish, aquatic macro-invertebrate, habitat and water quality).
- To monitor trends through time in this baseline values to determine decline or improvement in condition.
- To determine spatial and temporal trends in the aquatic ecosystem health throughout the Moggill Creek Catchment.
- To identify reaches which require particular attention for rehabilitation or protection.
- To increase community awareness and knowledge of issues and relevant skills relating to water quality, creek health and subsequent effects on aquatic ecosystem health.
- To identify issues and opportunities for improving the condition of waterways and take action to address these.
- To foster partnerships between Moggill Creek Catchment Group with other groups, e.g. UQ, SEQ Catchments.

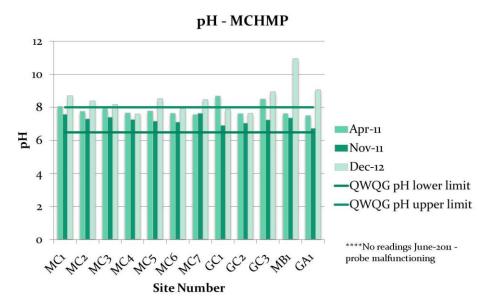
May 2013 – Sampling Summary

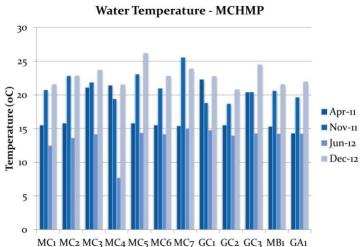
- In May 2013 twelve sites throughout the Moggill Creek catchment were sampled by members of the Moggill Creek Catchment Group (MCCG) under guidance of Camille Percival.
- Seven sites were sampled on Moggill Creek itself along with 3 sites along Gold Creek and single sites on Gap Creek and Mackay Brook.
- Generally, aquatic ecosystem of creeks within the Moggill Creek catchment were in relatively good condition:
 - ✓ Water quality results were similar to previous sampling events.
 - ✓ There was a relatively good diversity of sensitive and tolerant macroinvertebrate species in most sites.
 - √ 861 fish from 14 species were recorded throughout the catchment.
 - ✓ Aquatic vegetation was not monitored during the May 2013 sampling.

Water Quality – Summary

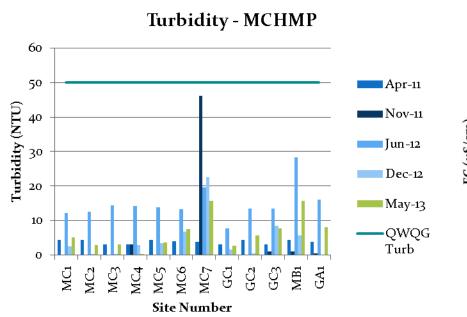
- Dissolved oxygen probe malfunctioned during May 2013.
- Water temperature was reflective of ambient temperatures and comparable between the two years of sampling.
- pH was what would be expected at all sites except Mackay Brook. above Possibly linked to local geology or groundwater inflow influences in the creeks, with decreasing flows.
- Conductivity gradient (increasing downstream) was observed in Moggill Creek. High at Mackay Brook consistent with past sampling.
- Turbidity was reasonably low at all sites and below the QWQG for lowland streams in SEQ.


Water Quality – May 2013

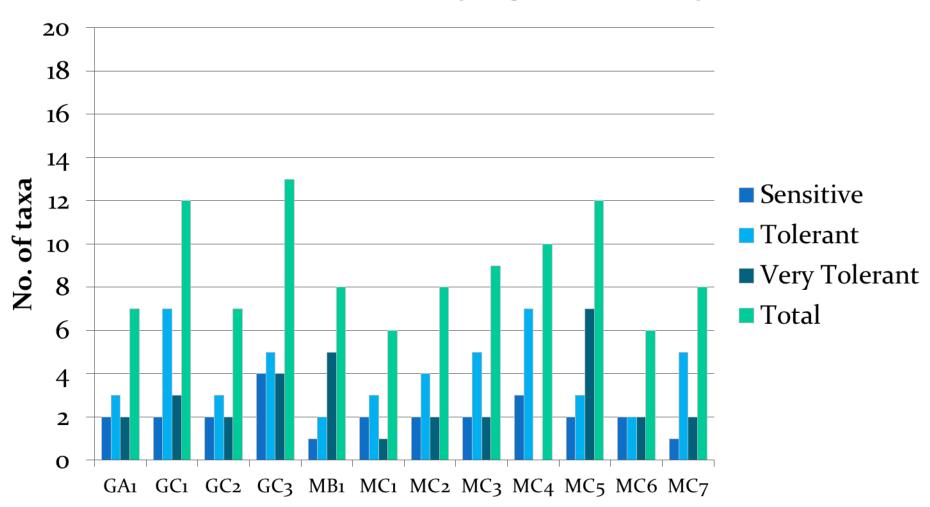

		Parameter										
Site	Dissolved Oxygen (mg/L)*	рН	Temperature (°C)	Electrical conductivity (µS/cm)	Turbidity (NTU)							
MC1	-	7.45	16	352	5.1							
MC2	-	7.65	15.1	326	2.8							
MC3	-	7.6	16.3	393	3.1							
MC4	-	7.4	16	446	0.1							
MC5	-	7.32	15.9	492	3.6							
MC6	-	7.12	16.1	471	7.6							
MC7	-	7.3	16.6	504	15.6							
GC1	-	7.68	15.3	144	2.6							
GC2	-	7.25	14.6	335	5.6							
GC3	-	7.47	15.9	423	7.64							
MB1	-	6.89	14.7	1042	15.7							
GA1	_	7.47	13.6	367	8.12							


Red text = exceedance of QWQG (2009) for lowland streams

^{*}Dissolved oxygen not recorded due to instrument malfunction

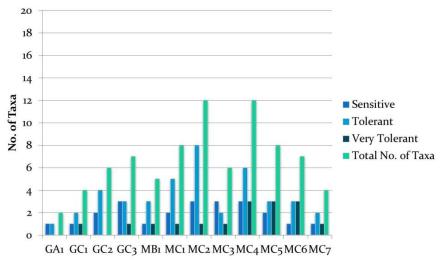

Water Quality – DO, temp and pH

Water Quality – Conductivity and Turbidity

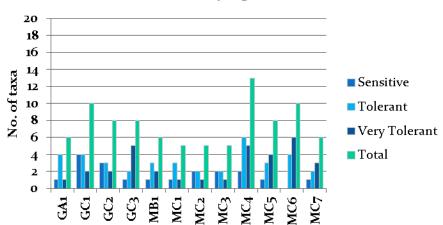

Aquatic Macroinvertebrates – Summary of Findings

- Reasonably good spread of sensitive, tolerant and very tolerant species. Twenty-six families identified throughout the catchment indicates a relatively healthy community in the waterways of Moggill Creek.
- Highest number of macroinvertebrate taxa found at Site 3 of Gold Creek, with the highest number of sensitive taxa also found at this site.
- The highest number of taxa recorded at Mackay Brook for all sampling occasions (8 taxa)
- The number of macroinvertebrate taxa in Moggill Creek increased in a downstream gradient until site 5, after which it decreased.
- Taxa Richness has fluctuated at all other sites, increasing or decreasing between sampling periods.

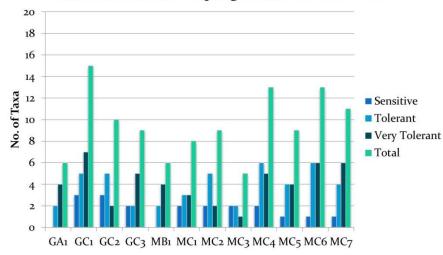
Aquatic macroinvertebrates - May 2013

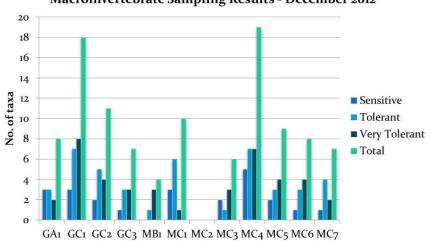

SENSITIVE	Mayfly nymph		Pollution sensitivity	GA1	GC1	GC2	GC ₃		MC1			С4	WICS	IVICO	MC ₇
	wayny nympn	Ephemeroptera	10	✓	✓	✓	✓		✓	✓	✓	✓		✓	
	Caddis fly nymph	Trichoptera	10	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Stonefly nymph	Plecoptera	9		✓		✓					✓			
	Riffle beetle adult	Coleoptera	8				✓						✓		
	Riffle beetle larva	Coleoptera	8												
	Crane fly larva	Diptera	6												
	Water mite	Acariformes	6												
TOLERANT	Water flea	Cladocera (suborder)	5												
	Whirligig beetle adult	Coleoptera	5		✓	✓					✓	✓			
	Whirligig beetle larva	Coleoptera	5		✓		✓					✓	✓		
	Blackfly larva	Diptera	5												
	Water measurer	Hemiptera	4												
	Damselfly larva	Odonata	4		✓				✓	✓		✓			✓
	Dragonfly larva	Odonata	4		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Freshwater yabby	Decapoda	4		✓					✓	✓	✓			
	Scud	Amphipoda	4								✓				✓
	Freshwater shrimp & prawns	Decapoda	4	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓
	Biting midge larvae	Diptera	4									✓			✓
	Copepod	Copepoda (subclass)	4												
	Water strider	Hemiptera	4	✓	✓			✓				✓			
	Seed shrimp	Ostracoda	4	✓			✓								
	Soldier fly larva	Diptera	4				✓								
VERY TOLERANT	Water scorpion	Hemiptera	3												
	Freshwater slater (isopod)	Isopoda	3					✓					✓		
	Freshwater mussel	Bivalvia (class)	3												
	Scavenger water beetle adult	Coleoptera	3	✓		✓									
	Scavenger water beetle larva	Coleoptera	3	✓				✓							
	Mosquito larva/pupae	Diptera	3				✓						✓		
	Flatworm	Turbellaria (class)	3		✓										
	Non-biting midge larva	Diptera	3		✓	✓		✓		✓					✓
	Freshwater snail	Gastropoda (class)	2					✓			✓				
	Hydra	Hydrozoa	2												
	Backswimmer	Hemiptera	2							✓	✓		✓		
	Leech	Hirudinea (class)	2										✓		
	Predacious diving beetle adult	Coleoptera	2		✓										
	Predacious diving beetle larva	Coleoptera	2												
	Roundworm	Nematoda (phylum)	2				✓						✓		
	Water boatman	Hemiptera	1				✓		✓				✓	✓	✓
	Segmented worm	Oligocheata (class)	1				✓	✓					✓	✓	

Macroinvertebrate Sampling Results - May 2013



Previous macroinvertebrate results




Macroinvertebrate Sampling results - June 2012

Macroinvertebrate Sampling Results - November 2011

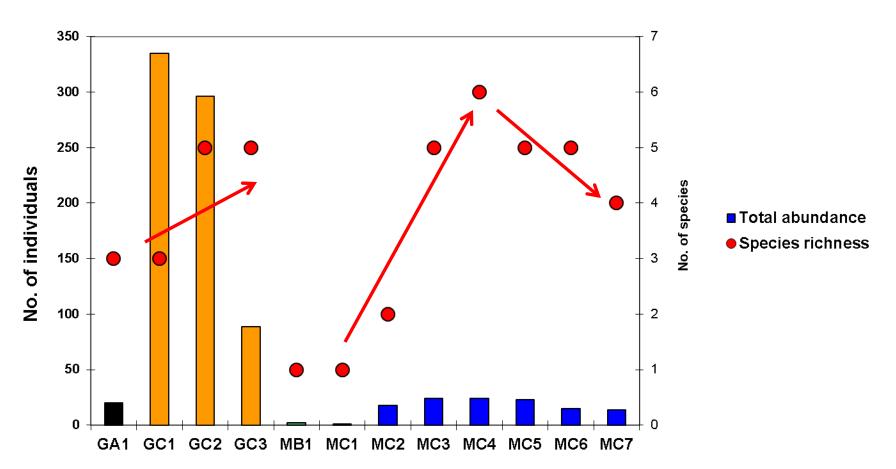
Macroinvertebrate Sampling Results - December 2012

Fish Species – Summary of Findings

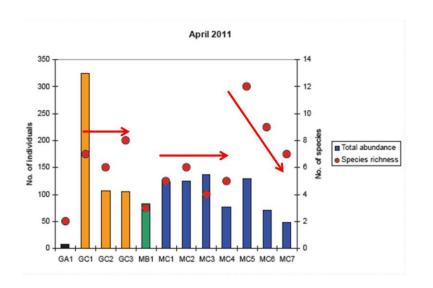
- 861 fish from 14 species recorded. Sampling was successful at recording a broad range of species.
- Generally lower fish abundance in sites along Moggill Creek.
- Site 4 at Moggill Creek recorded the highest number of taxa with 6 species recorded.
- Site 1 and 3 at Gold Creek recorded the highest abundance with 335 and 296 individuals captured respectively. Dominated by Hypseleotris species.
- Gap Creek and McKay Brook consistently have low abundance and diversity.
- Some interesting upstream to downstream species richness trends across sampling periods, longer term data required to help explain.

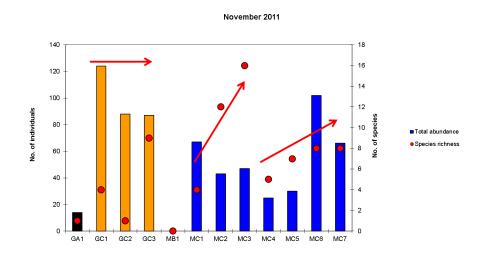
Male western carp gudgeon (Hypseleotris klunzingeri)

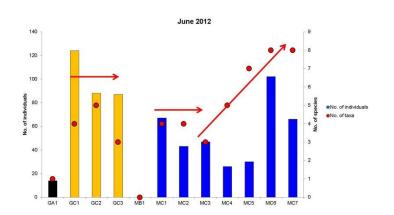
Male (top) and female (bottom) firetail gudgeon (Hypseleotris galii)

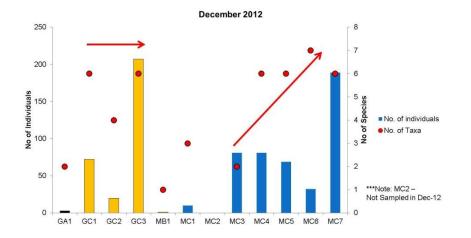

Fish species abundance – December 2012

Species	Common name	GA ₁	GC ₁	GC ₂	GC ₃	MB ₁	MC1	MC ₂	MC ₃	MC ₄	MC ₅	MC6	MC ₇
Ambassis agassizii	Agassiz's glassfish								5				
Craterocephalus stermuscarum	Unspecked hardyhead						1	3					
Gambusia holbrooki	Mosquito fish			7	5					3			
Hypseleotris galii	Firetailed gudgeon	1		267	36	2		15	15	6	2	1	
Hypseleotris klunzingeri	Western carp gudgeon		291	·	22						2	5	3
Hypseleotris compressa	Empire gudgeon				25					10	3	2	9
Melanotania duboulayi	Crimson spotted rainbowfish	18	43	8					2	1	1	6	
Mogurnda adspersa	Purple-spotted gudgeon		.,		1				1				
Philypnodon grandiceps	Flathead gudgeon									1			1
Philypnodon macrostomas	Dwarf flathead gudgeon											1	
Pseudomugil signifer	Pacific blue-eye			13						3			
Tandanus tandanus	Eel-tailed catfish			1					1	,			
Xiphophorus helleri	Swordtail	1		_					_				
Xiphophorus maculatus	Platy	•	1										
<i>Αιγπορποι</i> α <i>ς παυαι</i> ατας	Unidentified		1								15		1
Totals	omachinea	20	335	296	89	2	1	18	24	24	23	15	14


^{**}Exotic fish species in red


Fish total abundance and species richness – May 2013





Previous fish abundance and species richness results

Future Directions

- We are likely to be coming out of a series of wet years and into a series of dry years, results in coming years are likely to show some interesting contrasts in aquatic ecosystem health and help us better understand the system
- To help improve the turnaround time of reports it is suggested that one person needs to be designated to follow up with data collation.
- Camille and I will always be happy to assist and provide technical advice, however, as we now live quite a distance away a new local technical lead should be identified.
- As always, please continue to provide feedback including;
 - if you find the field sheets confusing,
 - have trouble with macroinvertebrate and fish IDs or,
 - can see any potential areas of improvement that could be made.

Contact Details

- Dr Tim Howell: <u>tdhowell@hotmail.com</u>
- Camille Percival: camille.percival@uqconnect.edu.au
- Adrian Webb: adrian@webbnet.com.au