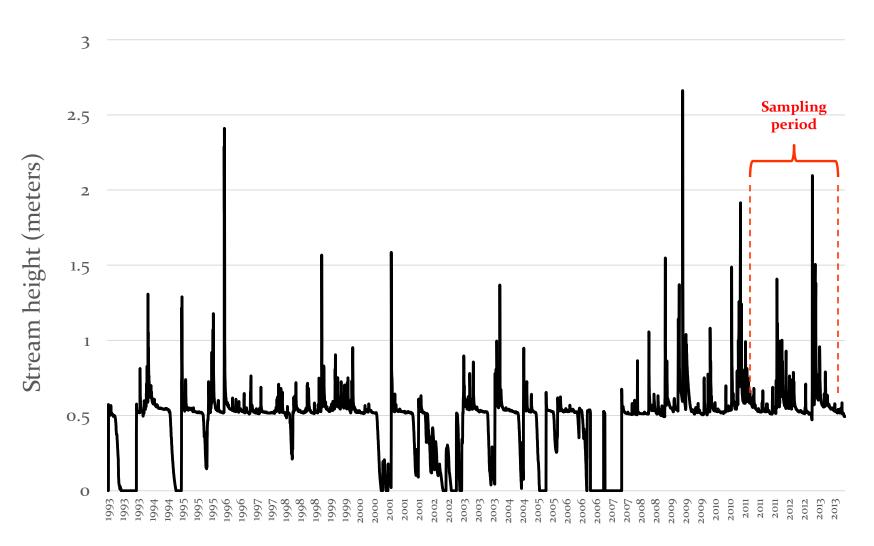
Moggill Catchment Creek Health Monitoring Program November 2013 – Sampling Overview

Prepared by Dr Tim Howell and Camille Percival

Thank you!

Without you we wouldn't have such a successful monitoring program!

We really appreciate you giving up your precious time to participate and we hope that you will continue to be involved with the program!


Monitoring Program Objectives

- To assess current conditions throughout the catchment (fish, aquatic macroinvertebrate, habitat and water quality).
- To monitor trends through time in this baseline values to determine decline or improvement in condition.
- To determine spatial and temporal trends in the aquatic ecosystem health throughout the Moggill Creek Catchment.
- To identify reaches which require particular attention for rehabilitation or protection.
- To increase community awareness and knowledge of issues and relevant skills relating to water quality, creek health and subsequent effects on aquatic ecosystem health.
- To identify issues and opportunities for improving the condition of waterways and take action to address these.
- To foster partnerships between Moggill Creek Catchment Group with other groups, e.g. UQ, SEQ Catchments.

November 2013 – Sampling Summary

- In late October/ early November 2013 eleven sites throughout the Moggill Creek catchment were sampled by members of the Moggill Creek Catchment Group (MCCG) under guidance of Camille Percival and Adrian Webb.
- Six sites were sampled on Moggill Creek itself (one of the normal site was dry) along with 3 sites along Gold Creek and single sites on Gap Creek and Mackay Brook.
- Generally, aquatic ecosystem of creeks within the Moggill Creek catchment were in relatively good condition:
 - ✓ Water quality results were similar to previous sampling events.
 - ✓ There was a relatively good diversity of sensitive and tolerant macroinvertebrate species in most sites.
 - √ 765 fish from 15 species were recorded throughout the catchment.
 - ✓ Aquatic vegetation was not monitored during the November 2013 sampling.

Stream Height Data – Moggill Creek (143032A)

Water Quality – Summary

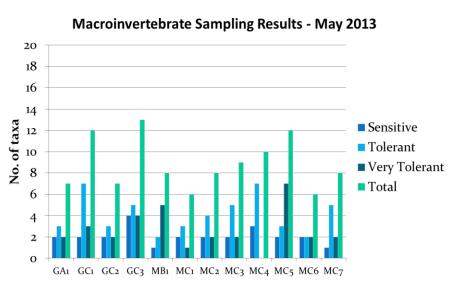
- Dissolved oxygen was relatively high across all sites.
- Water temperature was reflective of ambient temperatures and comparable between the two years of sampling.
- pH was what would be expected at all sites.
- Conductivity gradient (increasing downstream) was observed in Moggill Creek. High at MC7 likely to be attributable to tidal water intrusion. The trend for higher conductivity across all sites in the November/December sampling period was also consistent.
- Turbidity was reasonably low at all sites and below the QWQG for lowland streams in SEQ.

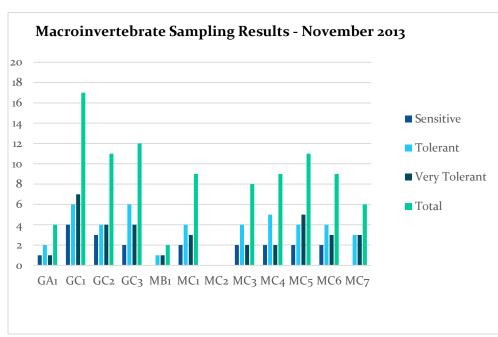
Water Quality – November 2013

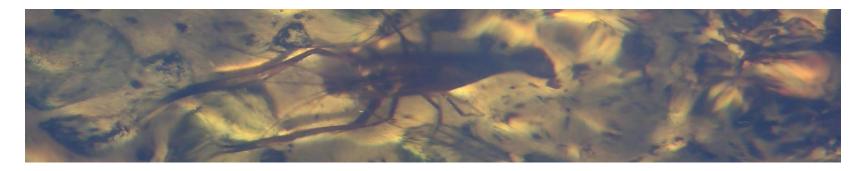
Site	Dissolved Oxygen mg/L	pН	Temperature (°C)	Electrical Conductivity (microS/cm)	Turbidity (NTU)								
MC1	8.5	7.13	23.8	497	0								
MC2	Dry no sample												
MC ₃	8.28	7.24	24	770	0								
MC4	9.33	7.1	21.6	782	4.82								
MC ₅	8.1	6.98	26.4	725	0								
MC6	8.7	6.92	24.3	814	10.2								
MC ₇	8.31	7.1	24.7	6866	11.0								
GC1	10.1	6.7	20.2	212	7.4								
GC2	9.8	7.05	22	960	0								
GC ₃	8.89	7.1	22.6	893	2.4								
MB1	7.48	6.84	23.2	1184	0								
GA1	7.26	6.84	23.8	572	0								

Aquatic Macroinvertebrates – Summary of Findings

- Reasonably good spread of sensitive, tolerant and very tolerant species. Twenty-six orders identified throughout the catchment indicates a relatively healthy community in the waterways of Moggill Creek.
- Highest number of macroinvertebrate taxa found at Site 1 of Gold Creek, with the highest number of sensitive taxa found at Site 3 of Gold Creek this site.
- Some interesting upstream to downstream species richness trends across sampling periods, longer term data required to help explain.

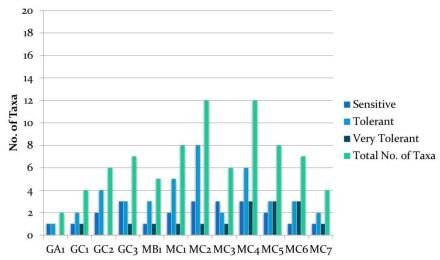


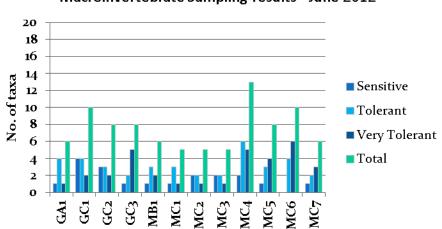



Aquatic macroinvertebrates - May 2013

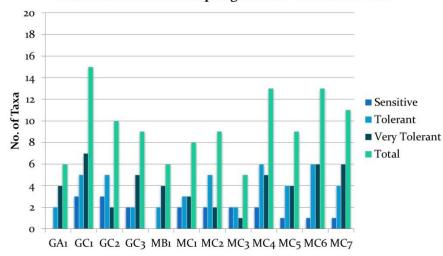
	Common name	Scientific order (unless otherwise indicated)	Pollution sensitivity	GA1	GC1	GC2	GC ₃	MB1	MC1	MC2	MC ₃	MC4	MC ₅	MC6	MC ₇
SENSITIVE	Mayfly nymph	Ephemeroptera	10	✓	✓	✓	✓		✓	✓	✓	✓		✓	
	Caddis fly nymph	Trichoptera	10	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Stonefly nymph	Plecoptera	9		✓		✓					✓			
	Riffle beetle adult	Coleoptera	8				✓						✓		
	Riffle beetle larva	8													
	Crane fly larva	Diptera	6												
	Water mite	Acariformes	6												
TOLERANT	Water flea	Cladocera (suborder)	5												
	Whirligig beetle adult	Coleoptera	5		✓	✓					✓	✓			
	Whirligig beetle larva	Coleoptera	5		✓		✓					✓	✓		
	Blackfly larva	Diptera	5												
	Water measurer	Hemiptera	4												
	Damselfly larva	Odonata	4		✓				✓	✓		✓			✓
	Dragonfly larva	Odonata	4		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Freshwater yabby	Decapoda	4		✓					✓	✓	✓			
	Scud	Amphipoda	4								✓				✓
	Freshwater shrimp & prawns	Decapoda	4	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓
	Biting midge larvae	Diptera	4									✓			✓
	Copepod	Copepoda (subclass)	4												
	Water strider	Hemiptera	4	✓	✓			✓				✓			
	Seed shrimp	Ostracoda	4	✓			✓								
	Soldier fly larva	Diptera	4				✓								
VERY TOLERANT	Water scorpion	Hemiptera	3												
	Freshwater slater (isopod)	Isopoda	3					✓					✓		
	Freshwater mussel	Bivalvia (class)	3												
	Scavenger water beetle adult	Coleoptera	3	✓		✓									
	Scavenger water beetle larva	Coleoptera	3	✓				✓							
	Mosquito larva/pupae	Diptera	3				✓						✓		
	Flatworm	Turbellaria (class)	3		✓										
	Non-biting midge larva	Diptera	3		✓	✓		✓		✓					✓
	Freshwater snail	Gastropoda (class)	2					✓			✓				
	Hydra	Hydrozoa	2												
	Backswimmer	Hemiptera	2							✓	✓		✓		
	Leech	Hirudinea (class)	2										✓		
	Predacious diving beetle adult	Coleoptera	2		✓										
	Predacious diving beetle larva	Coleoptera	2												
	Roundworm	Nematoda (phylum)	2				✓						✓		
	Water boatman	Hemiptera	1				✓		✓				✓	✓	✓
	Segmented worm	Oligocheata (class)	1				✓	✓					✓	✓	
		<u> </u>													

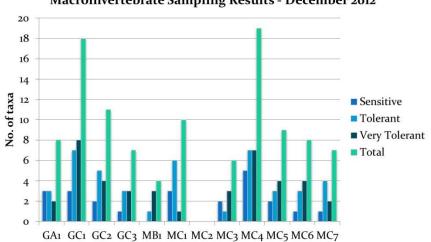
2013 macroinvertebrate results





Previous years macroinvertebrate results




Macroinvertebrate Sampling results - June 2012

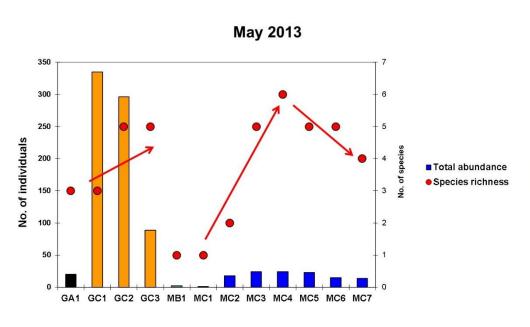
Macroinvertebrate Sampling Results - November 2011

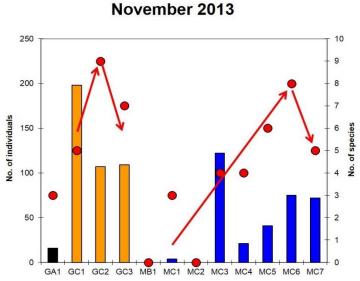
Macroinvertebrate Sampling Results - December 2012

Fish Species – Summary of Findings

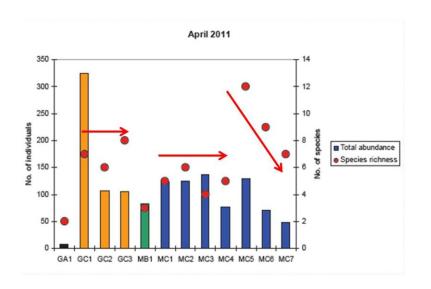
- 765 fish from 15 species recorded. Sampling was again successful at recording a broad range of species.
- Generally lower fish abundance in sites along Moggill Creek.
- Site 2 at Gold Creek had the highest number of taxa with 9 species recorded.
- Gap Creek and McKay Brook consistently have low abundance and diversity.
- Some interesting upstream to downstream species richness trends across sampling periods, longer term data required to help explain.

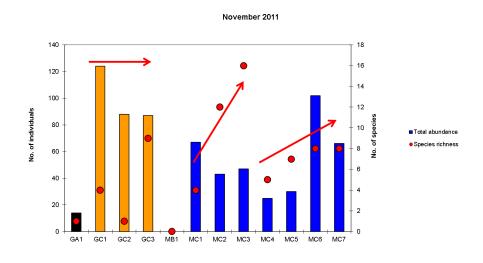
Male western carp gudgeon (Hypseleotris klunzingeri)

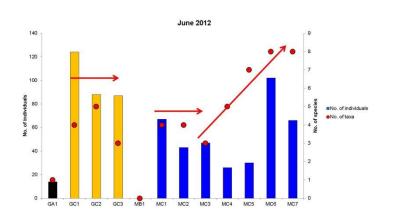

Male (top) and female (bottom) firetail gudgeon (Hypseleotris galii)

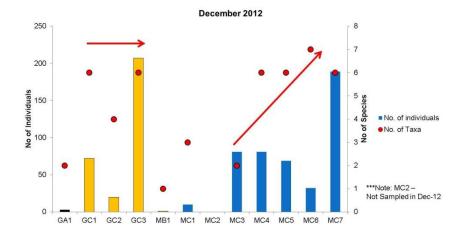

Fish species abundance – November 2013

Species	Common name	GC ₁	GC ₂	GC ₃	GA	MB	MC ₁	MC ₂	MC ₃	MC ₄	MC ₅	MC6	MC ₇	Totals
Ambassis agasizii	Olive perchlet								28					28
Anguilla australis	Short-finned eel									1				1
Gambusia holbrooki	Mosquito fish			2							14			16
Gobiomorphus australis	Striped gudgeon		3									3	1	7
Hypseleotris compressa	Empire gudgeon	14	2	55			2				10	58	43	184
Hypseleotris galii	Firetail gudgeon	48	17	7	2		1	Dry	83	4	7	2	1	172
Hypseleotris klunzingeri	Western carp gudgeon	50	62	2				- Y				3		117
Melanotania duboulayi	Crimson spotted rainbowfish	41	3		9			- not	8	15		2		78
Mogurnda adspersa	Purple-spotted gudgeon		1				1	m						2
Philypnodon grandiceps	Flathead gudgeon			1				sampled			3		5	9
Philypnodon macrostomas	Dwarf flathead gudgeon		1					ple				4		5
Pseudomugil signifer	Pacific blue-eye		13	41				ğ			3	1	22	8o
Retropinna semoni	Australian smelt										4	2		6
Tandanus tandanus	Eel-tailed catfish									1				1
Xiphophorus helleri	Swordtail	45	5	1	5				3					59
	Total Abundance	198	107	109	16	О	4		122	21	41	75	72	765


Exotic fish species in red


Fish total abundance and species richness – May & October 2013





Previous years fish abundance and species richness

Future Directions

- The coming year will represent the first samples to be collected entering a drier period. This will perhaps reveal some of the more significant trends in relation to ecosystem stressors.
- A report on the first three years of ecosystem surveying (over a wet period) will be produced in the coming months.
- Camille and I will always be happy to assist and provide technical advice, however, as we now live quite a distance away a new local technical lead(s) should be identified for biannual surveys.
- As always, please continue to provide feedback including;
 - if you find the field sheets confusing,
 - have trouble with macroinvertebrate and fish IDs or,
 - can see any potential areas of improvement that could be made.

Contact Details

- Dr Tim Howell: tim@freshwaterecology.com.au
- Camille Percival: camille.percival@uqconnect.edu.au
- Adrian Webb: adrian@webbnet.com.au